Source code

Revision control

Copy as Markdown

Other Tools

"use strict";
ChromeUtils.defineESModuleGetters(this, {
unaryEncodeDiffPrivacy:
});
add_task(function test_dictAdd() {
let dict = {};
dictAdd(dict, "a", 3);
Assert.equal(dict.a, 3, "Should set value when key is missing");
dictAdd(dict, "a", 2);
Assert.equal(dict.a, 5, "Should add value when key exists");
});
add_task(function test_dictApply() {
let input = { a: 1, b: 2 };
let output = dictApply(input, x => x * 2);
Assert.deepEqual(output, { a: 2, b: 4 }, "Should double all values");
let identity = dictApply(input, x => x);
Assert.deepEqual(
identity,
input,
"Should return same values with identity function"
);
});
add_task(function test_divideDict_basic() {
const numerator = { a: 6, b: 4 };
const denominator = { a: 2, b: 2 };
const result = divideDict(numerator, denominator);
Assert.deepEqual(
result,
{ a: 3, b: 2 },
"Basic division should correctly divide numerator by denominator"
);
});
add_task(function test_divideDict_missingDenominator() {
const numerator = { a: 6, b: 4 };
const denominator = {};
const result = divideDict(numerator, denominator);
Assert.deepEqual(
result,
{ a: 0, b: 0 },
"Missing denominator keys should yield 0 for each numerator key"
);
});
add_task(function test_divideDict_zeroDenominator() {
const numerator = { a: 5, b: 10 };
const denominator = { a: 0, b: 2 };
const result = divideDict(numerator, denominator);
Assert.deepEqual(
result,
{ a: 0, b: 5 },
"Zero denominator should produce 0. non-zero denominator should divide normally"
);
});
add_task(function test_divideDict_missingNumerator() {
const numerator = {};
const denominator = { a: 3, b: 5 };
const result = divideDict(numerator, denominator);
Assert.deepEqual(
result,
{ a: 0.0, b: 0.0 },
"Denominator keys without numerator should yield 0.0 for each key"
);
});
add_task(function test_DayTimeWeighting_getDateIntervals() {
let weighting = new DayTimeWeighting([1, 2], [0.5, 0.2]);
let now = Date.now();
let intervals = weighting.getDateIntervals(now);
Assert.equal(
intervals.length,
2,
"Should return one interval per pastDay entry"
);
Assert.lessOrEqual(
intervals[0].end,
new Date(now),
"Each interval end should be before or equal to now"
);
Assert.less(
intervals[0].start,
intervals[0].end,
"Start should be before end"
);
Assert.lessOrEqual(
intervals[1].end,
new Date(now),
"Each interval end should be before or equal to now"
);
Assert.less(
intervals[1].start,
intervals[0].end,
"Start should be before end"
);
});
add_task(function test_DayTimeWeighting_getRelativeWeight() {
let weighting = new DayTimeWeighting([1, 2], [0.5, 0.2]);
Assert.equal(
weighting.getRelativeWeight(0),
0.5,
"Should return correct weight for index 0"
);
Assert.equal(
weighting.getRelativeWeight(1),
0.2,
"Should return correct weight for index 1"
);
Assert.equal(
weighting.getRelativeWeight(2),
0,
"Should return 0 for out-of-range index"
);
});
add_task(function test_DayTimeWeighting_fromJSON() {
const json = { days: [1, 2], relative_weight: [0.1, 0.3] };
const weighting = DayTimeWeighting.fromJSON(json);
Assert.ok(
weighting instanceof DayTimeWeighting,
"Should create instance from JSON"
);
Assert.deepEqual(
weighting.pastDays,
[1, 2],
"Should correctly parse pastDays"
);
Assert.deepEqual(
weighting.relativeWeight,
[0.1, 0.3],
"Should correctly parse relative weights"
);
});
add_task(function test_InterestFeatures_applyThresholds() {
let feature = new InterestFeatures("test", {}, [10, 20, 30]);
// Note that number of output is 1 + the length of the input weights
Assert.equal(
feature.applyThresholds(5),
0,
"Value < first threshold returns 0"
);
Assert.equal(
feature.applyThresholds(15),
1,
"Value < second threshold returns 1"
);
Assert.equal(
feature.applyThresholds(25),
2,
"Value < third threshold returns 2"
);
Assert.equal(
feature.applyThresholds(35),
3,
"Value >= all thresholds returns length of thresholds"
);
});
add_task(function test_InterestFeatures_noThresholds() {
let feature = new InterestFeatures("test", {});
Assert.equal(
feature.applyThresholds(42),
42,
"Without thresholds, should return input unchanged"
);
});
add_task(function test_InterestFeatures_fromJSON() {
const json = { features: { a: 1 }, thresholds: [1, 2] };
const feature = InterestFeatures.fromJSON("f", json);
Assert.ok(
feature instanceof InterestFeatures,
"Should create InterestFeatures from JSON"
);
Assert.equal(feature.name, "f", "Should set correct name");
Assert.deepEqual(
feature.featureWeights,
{ a: 1 },
"Should set correct feature weights"
);
Assert.deepEqual(feature.thresholds, [1, 2], "Should set correct thresholds");
});
const SPECIAL_FEATURE_CLICK = "clicks";
const AggregateResultKeys = {
POSITION: "position",
FEATURE: "feature",
VALUE: "feature_value",
SECTION_POSITION: "section_position",
FORMAT_ENUM: "card_format_enum",
};
const SCHEMA = {
[AggregateResultKeys.FEATURE]: 0,
[AggregateResultKeys.FORMAT_ENUM]: 1,
[AggregateResultKeys.VALUE]: 2,
};
const jsonModelData = {
model_type: "clicks",
day_time_weighting: {
days: [3, 14, 45],
relative_weight: [1, 0.5, 0.3],
},
interest_vector: {
news_reader: {
features: { pub_nytimes_com: 0.5, pub_cnn_com: 0.5 },
thresholds: [0.3, 0.4],
diff_p: 1,
diff_q: 0,
},
parenting: {
features: { parenting: 1 },
thresholds: [0.3, 0.4],
diff_p: 1,
diff_q: 0,
},
[SPECIAL_FEATURE_CLICK]: {
features: { click: 1 },
thresholds: [10, 30],
diff_p: 1,
diff_q: 0,
},
},
};
const jsonModelDataNoCoarseSupport = {
model_type: "clicks",
day_time_weighting: {
days: [3, 14, 45],
relative_weight: [1, 0.5, 0.3],
},
interest_vector: {
news_reader: {
features: { pub_nytimes_com: 0.5, pub_cnn_com: 0.5 },
thresholds: [],
// MISSING thresholds
diff_p: 1,
diff_q: 0,
},
parenting: {
features: { parenting: 1 },
thresholds: [0.3, 0.4],
// MISSING p,q values
},
[SPECIAL_FEATURE_CLICK]: {
features: { click: 1 },
thresholds: [10, 30],
diff_p: 1,
diff_q: 0,
},
},
};
add_task(function test_FeatureModel_fromJSON() {
const model = FeatureModel.fromJSON(jsonModelData);
const curTime = new Date();
const intervals = model.getDateIntervals(curTime);
Assert.equal(intervals.length, jsonModelData.day_time_weighting.days.length);
for (const interval of intervals) {
Assert.lessOrEqual(
interval.start.getTime(),
interval.end.getTime(),
"Interval start and end are in correct order"
);
Assert.lessOrEqual(
interval.end.getTime(),
curTime.getTime(),
"Interval end is not in future"
);
}
});
const SQL_RESULT_DATA = [
[
["click", 0, 1],
["parenting", 0, 1],
],
[
["click", 0, 2],
["parenting", 0, 1],
["pub_nytimes_com", 0, 1],
],
[],
];
add_task(function test_modelChecks() {
const model = FeatureModel.fromJSON(jsonModelData);
Assert.equal(
model.supportsCoarseInterests(),
true,
"Supports coarse interests check yes "
);
Assert.equal(
model.supportsCoarsePrivateInterests(),
true,
"Supports coarse private interests check yes "
);
const modelNoCoarse = FeatureModel.fromJSON(jsonModelDataNoCoarseSupport);
Assert.equal(
modelNoCoarse.supportsCoarseInterests(),
false,
"Supports coarse interests check no "
);
Assert.equal(
modelNoCoarse.supportsCoarsePrivateInterests(),
false,
"Supports coarse private interests check no "
);
});
add_task(function test_computeInterestVector() {
const modelData = { ...jsonModelData, rescale: true };
const model = FeatureModel.fromJSON(modelData);
const result = model.computeInterestVector({
dataForIntervals: SQL_RESULT_DATA,
indexSchema: SCHEMA,
applyThresholding: false,
});
Assert.ok("parenting" in result, "Result should contain parenting");
Assert.ok("news_reader" in result, "Result should contain news_reader");
Assert.equal(result.parenting, 1.0, "Vector is rescaled");
Assert.equal(result[SPECIAL_FEATURE_CLICK], 2, "Should include raw click");
});
add_task(function test_computeThresholds() {
const modelData = { ...jsonModelData, rescale: true };
const model = FeatureModel.fromJSON(modelData);
const result = model.computeInterestVector({
dataForIntervals: SQL_RESULT_DATA,
indexSchema: SCHEMA,
applyThresholding: true,
});
Assert.equal(result.parenting, 2, "Threshold is applied");
Assert.equal(
result[SPECIAL_FEATURE_CLICK],
0,
"Should include thresholded raw click"
);
});
add_task(function test_unaryEncoding() {
const numValues = 4;
Assert.equal(
unaryEncodeDiffPrivacy(0, numValues, 1, 0),
"1000",
"Basic dp works with out of range p, q"
);
Assert.equal(
unaryEncodeDiffPrivacy(1, numValues, 1, 0),
"0100",
"Basic dp works with out of range p, q"
);
Assert.equal(
unaryEncodeDiffPrivacy(500, numValues, 0.75, 0.25).length,
4,
"Basic dp runs with unexpected input"
);
Assert.equal(
unaryEncodeDiffPrivacy(-100, numValues, 0.75, 0.25).length,
4,
"Basic dp runs with unexpected input"
);
Assert.equal(
unaryEncodeDiffPrivacy(1, numValues, 0.75, 0.25).length,
4,
"Basic dp runs with typical values"
);
Assert.equal(
unaryEncodeDiffPrivacy(1, numValues, 0.8, 0.6).length,
4,
"Basic dp runs with typical values"
);
});
add_task(function test_differentialPrivacy() {
const modelData = { ...jsonModelData, rescale: true };
const model = FeatureModel.fromJSON(modelData);
const result = model.computeInterestVector({
dataForIntervals: SQL_RESULT_DATA,
indexSchema: SCHEMA,
applyThresholding: true,
applyDifferentialPrivacy: true,
});
Assert.equal(
result.parenting,
"001",
"Threshold is applied with differential privacy"
);
Assert.equal(result[SPECIAL_FEATURE_CLICK].length, 3, "Apply DP to clicks");
});
add_task(function test_computeMultipleVectors() {
const modelData = { ...jsonModelData, rescale: true };
const model = FeatureModel.fromJSON(modelData);
const result = model.computeInterestVectors({
dataForIntervals: SQL_RESULT_DATA,
indexSchema: SCHEMA,
model_id: "test",
condensePrivateValues: false,
});
Assert.equal(
result.coarsePrivateInferredInterests.parenting,
"001",
"Threshold is applied with differential privacy"
);
Assert.ok(
Number.isInteger(result.coarseInferredInterests.parenting),
"Threshold is applied for coarse interest"
);
Assert.greater(
result.inferredInterests.parenting,
0,
"Original inferred interest is returned"
);
});
add_task(function test_computeMultipleVectorsCondensed() {
const modelData = { ...jsonModelData, rescale: true };
const model = FeatureModel.fromJSON(modelData);
const result = model.computeInterestVectors({
dataForIntervals: SQL_RESULT_DATA,
indexSchema: SCHEMA,
model_id: "test",
});
Assert.equal(
result.coarsePrivateInferredInterests.values.length,
3,
"Items in an array"
);
Assert.equal(
result.coarsePrivateInferredInterests.values[0].length,
3,
"One value in string per possible result"
);
Assert.ok(
result.coarsePrivateInferredInterests.values[0]
.split("")
.every(a => a === "1" || a === "0"),
"Combined coarse values are 1 and 0"
);
Assert.equal(
result.coarsePrivateInferredInterests.model_id,
"test",
"Model id returned"
);
Assert.greater(
result.inferredInterests.parenting,
0,
"Original inferred interest is returned"
);
});
add_task(function test_computeMultipleVectorsNoPrivate() {
const model = FeatureModel.fromJSON(jsonModelDataNoCoarseSupport);
const result = model.computeInterestVectors({
dataForIntervals: SQL_RESULT_DATA,
indexSchema: SCHEMA,
model_id: "test",
condensePrivateValues: false,
});
Assert.ok(
!result.coarsePrivateInferredInterests,
"No coarse private interests available"
);
Assert.ok(!result.coarseInferredInterests, "No coarse interests available");
Assert.greater(
result.inferredInterests.parenting,
0,
"Original inferred interest is returned"
);
});
const ctrModelDataNoDP = {
model_type: "ctr",
noise_scale: 0,
day_time_weighting: {
days: [3, 14, 45],
relative_weight: [1, 0.5, 0.3],
},
interest_vector: {
news_reader: {
features: { pub_nytimes_com: 0.5, pub_cnn_com: 0.5 },
},
parenting: {
features: { parenting: 1 },
},
},
};
const ctrModelDataWithDP = {
model_type: "ctr",
noise_scale: 1,
day_time_weighting: {
days: [3, 14, 45],
relative_weight: [1, 0.5, 0.3],
},
interest_vector: {
news_reader: {
features: { pub_nytimes_com: 0.5, pub_cnn_com: 0.5 },
thresholds: [0.3, 0.4],
diff_p: 1,
diff_q: 0,
},
parenting: {
features: { parenting: 1 },
thresholds: [0.3, 0.4],
diff_p: 1,
diff_q: 0,
},
},
};
add_task(function test_computeCTRInterestVectorsNoNoise() {
const model = FeatureModel.fromJSON(ctrModelDataNoDP);
// Note these are typically computed with the model.inferredInterests function and are not raw
// per feature impressions
const clickInferredInterests = { parenting: 1 };
const impressionInferredInterests = { parenting: 2, news_reader: 4 };
const result = model.computeCTRInterestVectors({
clicks: clickInferredInterests,
impressions: impressionInferredInterests,
model_id: "test-ctr-model",
});
console.log(JSON.stringify(result));
Assert.equal(
result.inferredInterests.model_id,
"test-ctr-model",
"Model id is CTR"
);
Assert.equal(result.inferredInterests.parenting, 0.5);
Assert.equal(result.inferredInterests.news_reader, 0);
Assert.ok(!result.coarseInferredInterests, "No coarse inferred interests");
});
add_task(function test_computCTRInterestVectorsWithNoise() {
const model = FeatureModel.fromJSON(ctrModelDataWithDP);
model.clipZero = false;
model.laplaceNoiseFn = () => 0.42;
const clickInferredInterests2 = { parenting: 1 };
const impressionInferredInterests2 = { parenting: 2, news_reader: 4 };
const result = model.computeCTRInterestVectors({
clicks: clickInferredInterests2,
impressions: impressionInferredInterests2,
model_id: "test-ctr-model",
});
Assert.equal(
result.inferredInterests.model_id,
"test-ctr-model",
"Model id is CTR"
);
// Assert the stubbed noise is added
Assert.equal(result.inferredInterests.parenting, 0.5 + 0.42);
Assert.equal(result.inferredInterests.news_reader, 0 + 0.42);
Assert.ok(result.coarseInferredInterests, "Coarse inferred interests exist");
Assert.ok(
result.coarsePrivateInferredInterests,
"Non coarse interests exist"
);
Assert.equal(result.coarseInferredInterests.parenting, 2);
Assert.equal(result.coarseInferredInterests.news_reader, 0);
});
add_task(function test_applyLaplaceNoise_clampsWhenClipZero() {
const model = FeatureModel.fromJSON(ctrModelDataWithDP);
model.noiseScale = 1;
model.laplaceNoiseFn = () => 0.05;
const input = { a: 0.03, b: 0.0, c: 0.04, d: "n/a" };
model.applyLaplaceNoise(input); // clipzero is the default
// min(max(x + 0.05, 0), 0.04)
Assert.equal(input.a, 0.04, "a is capped to 0.04");
Assert.equal(input.b, 0.04, "b becomes 0.05 then capped to 0.04");
Assert.equal(input.c, 0.04, "c stays capped at 0.04");
Assert.equal(input.d, "n/a", "non-number unaffected");
});
add_task(function test_applyLaplaceNoise_noClampWhenClipZeroFalse() {
const model = FeatureModel.fromJSON(ctrModelDataWithDP);
model.noiseScale = 1;
model.laplaceNoiseFn = _scale => -0.02;
const input = { a: 0.03 };
model.applyLaplaceNoise(input, /* clipZero */ false);
Assert.less(Math.abs(input.a - 0.01), 1e-9, "no clamp when clipZero=false");
});
add_task(function test_applyLaplaceNoise_EarlyReturn() {
const model = FeatureModel.fromJSON(ctrModelDataWithDP);
model.noiseScale = null;
const input = { a: 0.03 };
model.applyLaplaceNoise(input, /* clipZero */ false);
Assert.equal(input.a, 0.03, "a is unchanged with null noiseScale");
});